

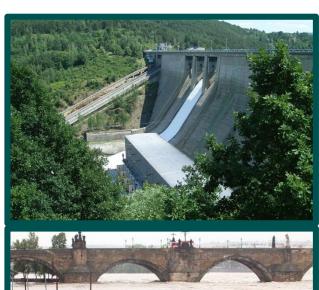
Acceptability of small-scale urban flood protection measures as a complement to large catchment-wide measures

Lenka Slavíková Jan Macháč Jiří Louda

Institute for Economic and Environmental Policy
Jan Evangelista Purkyně University in Ústí nad Labem

Seventh International Conference on Flood Management | 5 -7 September 2017 | Leeds, UK

Current situation in flood protection in the Czechia


Most common measures:

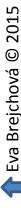
- large-scale grey infrastructure (dikes)
- small/medium-scale grey infrastructure inside the city (mobile or fixed barriers, safety valves etc)
- ... new dam constructions

Nature-based solutions (NBS): Some realizations in the open landscace.

Barriers to implement NBS in cities:

- low awareness of (co-)benefits
- high urban density
- wide range of stakeholders and interest groups
- complicated land ownership
- droughts in recent years → not perceived as significant risk
- political cycle → preference of short term results

- How to attract stakeholders of a city for the NBS implementation debate?
- How to evaluate and communicate (co-) benefits of NBS?


... case study of retention lake, wetland and park in Pilsen



Petr Förchtgott

Photo:

Pilsen case study in details:

- the city Pilsen is the 4th largest city in the Czech Republic
- heavily affected areas of floods in 2002 (damages of over EUR 20.8 mil.)
- NBS designed in the urban floodplains (total planned extent of 14 ha)
- combination of flood protection with recreational function
- only part of designed measures have been realized

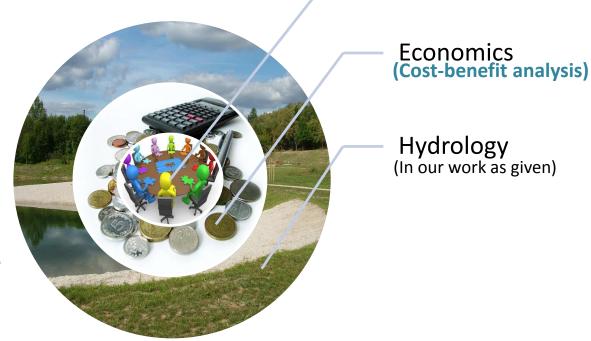
4 retention lakes (largest one suitable for bathing) complemented by a park and a wetland

Previously uncared-for green space, finished in 2015

4 lagoons retain 7,500 – 8,300 m³ of water

Total area of 3.5 ha

Methodology – 3 levels of investigation


Stakeholders (Stakeholder analysis)

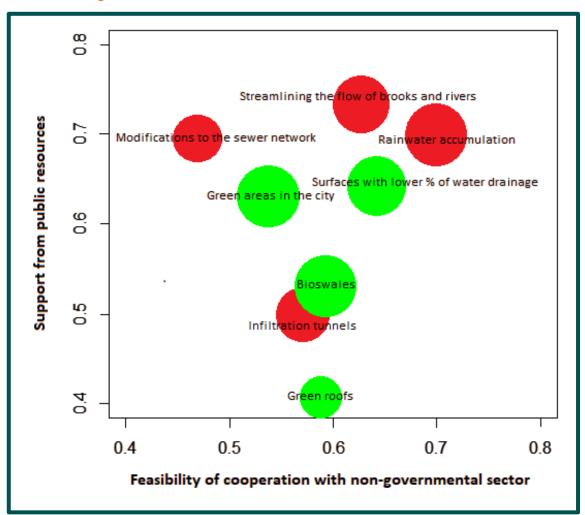
LEVEL 1: Stakeholder analysis

- in-depth interviews of representatives of various stakeholders
- analysis of institutional barriers
- Main goal: to analyse stakeholders views of the problem and barriers, efficiency and feasibility of measures

LEVEL 2: Cost-benefit analysis

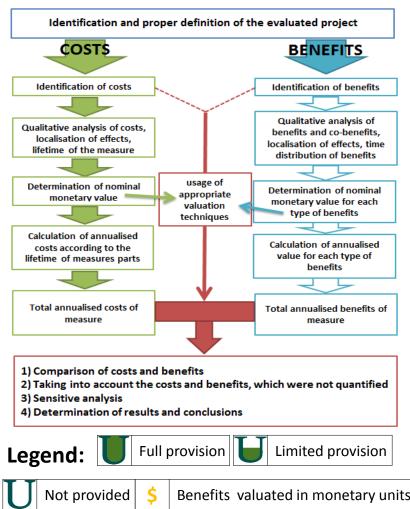
- based on the ecosystem services approach
- costs are set according to project budgets and estimated operating costs
- based on the concept of annualized cost and benefits
- Main goal: to set the annualized net social benefits to provide economical background for the NBS implementation debate

LEVEL 3: Hydrological analysis


 Main goal: to analyse the hydrological effect of measures

Results – Stakeholder analysis

- Flood problem perceived as significant
- Different measures (see graph) evaluated according to:
 - Effectiveness (size of the circle)
 - Feasibility to be realized from public resources (vertical axis)
 - Feasibility to be realized in cooperation with the support of other stakeholders (horizontal axis)



Results - Cost-benefit analysis

Type of benefits	Level of benefits	Type of benefits	Level of benefits
Reducing water volume at WWTP	U	CO2 reduction	U
Lowering risk of flooding	\$	Erosion reduction	\$
Supplying surface water and groundwater	\$	Real estate value	U
Improving water quality	\$	Recreational benefits	\$
Regulation of micro-climate /city's heat island	U	Increase in aesthetic value	\$
Noise reduction	U	Biomass production	U
Energy savings	U	Crop production (urban agriculture)	U
Air quality improvement	\$	Habitat creation	\$

Seventh International Conference on Flood Management | 5 -7 September 2017 | Leeds, UK

Results – **Cost-benefit analysis**

The **comparison of costs and benefits**:

- i. the total social benefits exceed the investment and operational costs
- ii. from a purely economic point of view, the implementation of the NBS makes sense,
- Benefits do not include all provided ecosystem services they could have been larger, iii.
- i۷. Costs do not include opportunity cost.

CB	Yearly (annualized) costs (EUR)	Yearly (annualized) benefits (EUR)	Benefits- costs ratio
Retention lake and park	59,484	1,529,293	25.7

Conclusions

- for decision-makers, quantification of benefits may represent the crucial argument for action,
- monetary quantification should be complemented by qualitative analysis (e.g. stakeholder analysis)
 - ⇒ better to address cultural and social perspectives of society representatives and reveal institutional failures and barriers that lead to the mismanagement of flood protection measures in cities
- small-scale urban NBSs by themselves are not panacea for the flood damage reduction, but:
 - they could effectively complement other types of measures
 - it could bring significant co-benefits into urban spaces

References:

Valuation metaanalysis:

EFTEC, 2010. Valuing Environmental Impacts: Practical Guidelines for the Use of Value Transfer in Policy and Project Appraisal Case Study 3 – Valuing Environmental Benefits of a Flood Risk Management Scheme. Report for Defra. London, 2010. 23 pp. [online], dostupné na:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/182376/vt-guidelines.pdf

Thank you for your attention!

Lenka Slavíková, <u>slavikova@ieep.cz</u>
Jan Macháč, <u>machac@ieep.cz</u>
Jiří Louda, <u>louda@ieep.cz</u>

COST Action LAND4FLOOD: Natural Flood Retention on Private Land

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM
Faculty of Social and Economic Studies